
The Quick Chart (.QCT)
File Format Specification

Revision 1.03
13 FEB 2011

Craig Shelley
craig@microtron.org.uk

Disclaimer
THIS DOCUMENT AND MODIFIED VERSIONS THEREOF ARE PROVIDED UNDER THE TERMS OF THE GNU FREE
DOCUMENTATION LICENCE WITH THE FURTHER UNDERSTANDING THAT:

1. THE DOCUMENT IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED
OR IMPLIED, INCLUDING, WITHOUT LIMITATION, WARRANTIES THAT THE DOCUMENT OR MODIFIED VERSION
OF THE DOCUMENT IS FREE OF DEFECTS MERCHANTABLE, FIT FOR A PARTICULAR PURPOSE OR NON-
INFRINGING. THE ENTIRE RISK AS TO THE QUALITY, ACCURACY, AND PERFORMANCE OF THE DOCUMENT OR
MODIFIED VERSION OF THE DOCUMENT IS WITH YOU. SHOULD ANY DOCUMENT OR MODIFIED VERSION PROVE
DEFECTIVE IN ANY RESPECT, YOU (NOT THE INITIAL WRITER, AUTHOR OR ANY CONTRIBUTOR) ASSUME THE
COST OF ANY NECESSARY SERVICING, REPAIR OR CORRECTION. THIS DISCLAIMER OF WARRANTY
CONSTITUTES AN ESSENTIAL PART OF THIS LICENSE. NO USE OF ANY DOCUMENT OR MODIFIED VERSION OF
THE DOCUMENT IS AUTHORISED HEREUNDER EXCEPT UNDER THIS DISCLAIMER; AND

2. UNDER NO CIRCUMSTANCES AND UNDER NO LEGAL THEORY, WHETHER IN TORT (INCLUDING NEGLIGENCE),
CONTRACT, OR OTHERWISE, SHALL THE AUTHOR, INITIAL WRITER, ANY CONTRIBUTOR, OR ANY DISTRIBUTOR
OF THE DOCUMENT OR MODIFIED VERSION OF THE DOCUMENT, OR ANY SUPPLIER OF ANY OF SUCH PARTIES,
BE LIABLE TO ANY PERSON FOR ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES
OF ANY CHARACTER INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF GOODWILL, WORK
STOPPAGE, COMPUTER FAILURE OR MALFUNCTION, OR ANY AND ALL OTHER DAMAGES OR LOSSES ARISING
OUT OF OR RELATING TO USE OF THE DOCUMENT AND MODIFIED VERSIONS OF THE DOCUMENT, EVEN IF
SUCH PARTY SHALL HAVE BEEN INFORMED OF THE POSSIBILITY OF SUCH DAMAGES.

3. ALL BRANDS AND PRODUCT NAMES MAY BE TRADEMARKS OR REGISTERED TRADEMARKS OF THEIR
RESPECTIVE OWNERS.

Copyright © 2011 Craig Shelley, Mark Bryant

Permission is granted to copy, distribute and/or modify this document under
the terms of the GNU Free Documentation Licence, Version 1.2 or any later
version published by the Free Software Foundation;

Table of Contents
1.0 Change History...3
2.0 References..4
3.0 Acronyms and Abbreviations..4
4.0 Important Note...4
5.0 Introduction..5

5.1 Key Features...5
5.2 QC3 Key Features...6

6.0 Quick Chart File Layout..6
6.1 Data Formats..6
6.2 Meta Data...7

6.2.1 Extended Data Structure...8
6.2.2 Map Outline..8
6.2.3 Datum Shift..8
6.2.4 License Information..8
6.2.5 Digital Map Shop..9
6.2.6 Serial Number..9

6.3 Geographical Referencing Coefficients...10
6.4 Palette..10

6.4.1 Interpolation Matrix..11
6.5 Image Index..11

7.0 Compressed Image Data..12
7.1 Interlacing...12
7.2 Pixel Packing...13
7.3 Run Length Coding...13
7.4 Huffman Coding..14

7.4.1 Huffman Codebook..14
7.4.2 Huffman Bit Stream...15
7.4.3 Finding the Start of the Bit Stream..15
7.4.4 Blank Tiles..15
7.4.5 Huffman Coding Example..16

8.0 Geographical Referencing Polynomials..18
9.0 QC3 Format..19

9.1 Quick Chart 3 File Layout..19
9.2 Data Formats..19
9.3 Meta Data...19
9.4 Image Index..20
9.5 Tile Meta Data...20
9.6 Scale Levels..20
9.7 Checksum...21
9.8 Compression...22

9.8.1 Huffman Codebook..22
9.8.2 Run Length Encoding...22
9.8.3 Decompression Example..23

9.9 Digital Rights Management...24

1.0 Change History

Revision Date Author Description of Change

1.00 01 NOV 2008 Craig Shelley Initial Issue

1.01 07 MAR 2009 Craig Shelley Corrected mistakes in the geographical
referencing coefficients and equations.
This affects the following sections:
Section 6.3:
Coefficients in columns 3 and 4 swapped.
Extra coefficients added for 3rd order
polynomials.
Section 8.0:
Calculation method corrected.
Added method for reverse calculation.

1.02 12 JUL 2009 Craig Shelley Section 7.4.4:
Renamed section to Blank Tiles, and
amended section body to describe blank
tile decoding procedure.
Section 7.4.5:
Corrected mistakes in Huffman example bit
stream data.

1.03 13 FEB 2011 Mark Bryant Section 2.0:
Added new references.
Section 3.0:
Added acronyms.
Section 6.2:
Added new meta data fields.
Section 9.0:
Added QC3 format documentation.

The Quick Chart File Format Specification V1.03 3

2.0 References
1 http://en.wikipedia.org/wiki/Run-length_encoding

2 http://en.wikipedia.org/wiki/Huffman_coding

3 http://en.wikipedia.org/wiki/WGS-84

4 http://en.wikipedia.org/wiki/Endianness

5 http://en.wikipedia.org/wiki/IEEE-754

6 http://en.wikipedia.org/wiki/Ascii

7 http://en.wikipedia.org/wiki/Advanced_Encryption_Standard

8 http://en.wikipedia.org/wiki/Block_cipher_modes_of_operation

3.0 Acronyms and Abbreviations

Acronym/Abbreviation Full Meaning

QCT Quick Chart

HEX Hexadecimal

PDA Personal Digital Assistant

GPS Global Positioning System

WGS World Geodetic System

LSB Least Significant Bit

MSB Most Significant Bit

ASCII American Standard Code for Information Interchange

IEEE Institution of Electrical and Electronics Engineers

QC3 Quick Chart 3 File

RAM Random Access Memory

AES Advanced Encryption Standard

ECB Electronic Codebook Mode

HTTP Hypertext Transfer Protocol

URL Uniform Resource Locator

4.0 Important Note
This document has been created with the intention to document a previously
undocumented file format. The information contained within has been obtained by
painstakingly viewing and attempting to interpret the content of freely available
Quick Chart files in a HEX editor, and is therefore is based entirely upon assumptions
and guesswork. It is highly likely that mistakes have been made during the
compilation of this document.

The information contained within this document is incomplete.

The information contained within this document was NOT obtained by
means of reverse engineering software applications.

The Quick Chart File Format Specification V1.03 4

http://en.wikipedia.org/wiki/Run-length_encoding
http://en.wikipedia.org/wiki/Block_cipher_modes_of_operation
http://en.wikipedia.org/wiki/Advanced_Encryption_Standard
http://en.wikipedia.org/wiki/Ascii
http://en.wikipedia.org/wiki/IEEE-754
http://en.wikipedia.org/wiki/Endianness
http://en.wikipedia.org/wiki/WGS-84
http://en.wikipedia.org/wiki/Huffman_coding

5.0 Introduction
The Quick Chart file format (.QCT file extension) is a raster image format designed
for storing high resolution maps. Its key design goal is to allow the images to be
viewed with very little processing overhead, while having an appreciable level of
lossless compression. Geographical data embedded within the header allows the
image to be mapped in terms of latitude and longitude.
This makes the Quick Chart file format ideally suited for displaying maps on portable
devices such as PDAs and hand held GPS units.

5.1 Key Features

● 128 colour palette

● Tile based compression

● Optimum compression algorithm used for each tile

● Pixel Packing

● Run Length Encoding [2]

● Huffman Coding [2]

● Tile index improves performance while displaying a small image area

● Tile Interlacing improves rendering performance while scaling down

● Interpolation Matrix defines how colours should be interpolated

● Improves rendering performance while scaling down

● Improves image clarity by allowing certain colours to take precedence
over others, for example major roads.

● File header fields define many aspects of the image data including;

● Title, Name, Ident

● Revision, Keywords, Copyright

● Scale, Datum, Projection

● Depths, Heights

● Original File Name, Original File Size, Creation Time

● Map Outline

● Geographical data fields provide polynomial coefficients to allow the
conversion between cartesian image co-ordinates and WGS-84 [2] latitude and
longitude.

● File format ideally suited for Memory Mapped I/O

A new version of the format (referred to as QC3) stores the image data in a separate
file with extension .qc3 whilst retaining the same format for the meta data.

The Quick Chart File Format Specification V1.03 5

5.2 QC3 Key Features

● Support for files over 4GiB allowing seamless maps of very large areas

● Improved compression algorithm utilising Huffman Coding and Run Length
Encoding

● Digital Rights Management

● Large map support for devices with limited RAM

● Improved support for scaled down display

6.0 Quick Chart File Layout

Offset Size (Bytes) Content

0x0000 24×4 Meta Data - 24 Integers/Pointers

0x0060 40×8 Geographical Referencing Coefficients - 40 Doubles

0x01A0 256×4 Palette - 128 of 256 Colours

0x05A0 128×128 Interpolation matrix

0x45A0 w×h×4 Image Index Pointers - QC3 files omit this

- - File Body - Text strings and compressed image data

6.1 Data Formats

Integers are stored as 4 bytes in Little-Endian [2] byte order.

Pointers are stored as 4 bytes in Little-Endian byte order and refer to byte locations
relative to the beginning of the file.

Doubles are stored as 8 byte IEEE-754 [2] double precision format.

Strings are stored as 1 byte per character in ASCII [2] and are NULL terminated.

Palette colours are stored as 3 bytes + 1 padding byte (Blue, Green, Red, 0x00).

The Quick Chart File Format Specification V1.03 6

6.2 Meta Data

Offset Data Type Content

0x00 Integer Magic Number
0x1423D5FE - Quick Chart Information
0x1423D5FF - Quick Chart Map

0x04 Integer File Format Version
0x00000002 – Quick Chart
0x00000004 – Quick Chart supporting License
Management
0x20000001 – QC3 Format

0x08 Integer Width (Tiles)

0x0C Integer Height (Tiles)

0x10 Pointer to String Long Title

0x14 Pointer to String Name

0x18 Pointer to String Identifier

0x1C Pointer to String Edition

0x20 Pointer to String Revision

0x24 Pointer to String Keywords

0x28 Pointer to String Copyright

0x2C Pointer to String Scale

0x30 Pointer to String Datum

0x34 Pointer to String Depths

0x38 Pointer to String Heights

0x3C Pointer to String Projection

0x40 Integer Bit-field Flags
Bit 0 - Must have original file
Bit 1 - Allow Calibration

0x44 Pointer to String Original File Name

0x48 Integer Original File Size

0x4C Integer Original File Creation Time (seconds since epoch)

0x50 Integer Reserved, set to 0

0x54 Pointer to Struct Extended Data Structure (see section 6.2.1)

0x58 Integer Number of Map Outline Points

0x5C Pointer to Array Map Outline (see section 6.2.2)

The Quick Chart File Format Specification V1.03 7

6.2.1 Extended Data Structure

Offset Data Type Content

0x00 Pointer to String Map Type

0x04 Pointer to Array Datum Shift (see section 6.2.3)

0x08 Pointer to String Disk Name

0x0C Integer Reserved, set to 0

0x10 Integer Reserved, set to 0

0x14 Pointer to Struct License Information (Optional, see section 6.2.4)

0x18 Pointer to String Associated Data

0x1C Pointer to Struct Digital Map Shop (Optional, see section 6.2.5)

6.2.2 Map Outline

The Map Outline is an array of latitude/longitude pairs which mark out the boundary
of the mapped region. The size of this array is stored in the Meta Data area at offset
0x58. Most maps will have four points to mark out the four corners of the map. Aerial
photographs can have several hundred points to mark out the boundaries of
counties.

Offset Data Type Content

0x00 Double Latitude

0x08 Double Longitude

...

6.2.3 Datum Shift

The datum shift is a pair of latitude/longitude values indicating the offset on the co-
ordinates for this map.

Offset Data Type Content

0x00 Double Datum Shift North

0x08 Double Datum Shift East

6.2.4 License Information

The license information contains a description of the product and when combined
with a license allows decryption of encrypted map contents.

Offset Data Type Content

0x00 Integer Identifier of the license – This correlates with name of
the license file used that must be paired with the map

0x04 Integer Unknown

0x08 Integer Unknown

The Quick Chart File Format Specification V1.03 8

0x0C Pointer to String License description

0x10 Pointer to Struct Serial Number (see section 6.2.6)

0x14 Integer Unknown

0x18 16 Bytes Unknown, set to 0

0x28 64 Bytes Unknown

6.2.5 Digital Map Shop

QC3 format maps support streaming tiles over HTTP and this structure contains the
necessary information.

Offset Data Type Content

0x00 Integer Structure size, set to 8

0x04 Pointer to String Partial URL to QC3 map file

6.2.6 Serial Number

Offset Data Type Content

0x00 32 Bytes Unknown

The Quick Chart File Format Specification V1.03 9

6.3 Geographical Referencing Coefficients

The geographical referencing coefficients are a set of polynomial coefficients that
enable the map pixel coordinates to be converted into WGS-84 latitude and
longitude. All coefficients are stored in double precision format.

Offset 0x00 0x50 0xA0 0xF0

0x00 eas nor lat lon

0x08 easY norY latX lonX

0x10 easX norX latY lonY

0x18 easYY norYY latXX lonXX

0x20 easXY norXY latXY lonXY

0x28 easXX norXX latYY lonYY

0x30 easYYY norYYY latXXX lonXXX

0x38 easYYX norYYX latXXY lonXXY

0x40 easYXX norYXX latXYY lonXYY

0x48 easXXX norXXX latYYY lonYYY
Refer to section 8 for the set of geographical referencing polynomials.

6.4 Palette

The colour palette contains all colours used within the image, allowing colours within
the compressed image data to be referenced by colour index. The colour palette can
contain up to 256 colours however the image compression algorithms only allow the
use of 128 colours. Therefore only the first 128 colours of the palette contain actual
colour values. Colours with an index of 129 to 255 are unused and are set to 0.

Each colour in the palette occupies 4 bytes, therefore the total palette size including
the 128 unused colours is 1024 bytes.

Offset Data Type Content

0x00 Byte Blue Intensity [0-255]

0x01 Byte Green Intensity [0-255]

0x02 Byte Red Intensity [0-255]

0x03 Byte Padding byte, set to 0

The Quick Chart File Format Specification V1.03 10

6.4.1 Interpolation Matrix

Since the images stored in Quick Chart format are relatively large, it is often
necessary to view them scaled down. To improve the clarity of the scaled down
image, interpolation is required. However due to the size of the image, and the fact
that a palette is used, this process would require a high processing overhead.

The solution to this problem is to use a matrix of pre-calculated colour indices. To
determine the palette index of two interpolated colours, use the two colours as a row
and column index of the interpolation matrix.

The image in figure 1 represents an
example content of an interpolation
matrix. An extra row of pixels has been
added to the top and left to show the
original colours. The matrix has a line of
symmetry about the leading diagonal.
Also notice how the colours of the
matrix are biased away from
background colours towards the colours
of major map features such as grid lines
(blue), roads (blue, pink, orange and
yellow) and text (black). This biasing
allows these features to remain visible
as the image is scaled down, preserving
the clarity of the map.

Interpolation matrix data are stored as
a block of 16384 bytes, one byte per
colour as 128 rows of 128 colours. The
offset of any given row/column index
into this matrix can be determined by;

Offset=128×y x

Symmetry of the matrix allows interchangeability of the x and y variables.

6.5 Image Index

The image is compressed using tiles of 64x64 pixels. The image dimensions in terms
of the number of tiles are stored in the Height and Width Meta data fields. For each
tile in the image, an entry is present in the index. Each index entry is a pointer to the
compressed image data for the tile. Each pointer is four bytes in size, hence the size
of the image index can be calculated as follows;

Index Size=4×width×height

The offset of any given tile in the index can be calculated by;

Offset=4×((Width×y)+ x)

The Quick Chart File Format Specification V1.03 11

Figure 1: Interpolation Matrix

7.0 Compressed Image Data
Each tile within the image is compressed to reduce the size of the image file. Three
compression algorithms are used to compress the image data, and all three
algorithms rely on the fact that an image tile will likely contain fewer colours than
the overall image. By using a sub-palette, the number of bits required to reference a
given colour can be reduced.

● Pixel Packing

Not strictly a compression technique, a more efficient method for storing
tiles that have few colours.

● Run Length Coding

More effective on tiles where a few colours are repeated many times.

● Huffman Coding

An entropy encoding algorithm, useful for complex tiles where some
colours occur much more frequently than others.

The pixel packing and run length coding algorithms use the first byte of the
compressed data to determine the number of colours in the sub-palette. The
encoding of this first byte of compressed data enables it to also be used to
determine the compression algorithm used by a tile, as follows;

If b0==0 or b0==255 then tile is Huffman coded.

Else If b0127 then tile is Pixel Packed.

Else tile is Run Length coded.

7.1 Interlacing

The pixel content of each tile is scanned from left to right in rows of 64 pixels. The
rows however are not in top to bottom order. Instead they are interlaced using a bit-
reverse sequence. The decompressed tile data must be scanned out row at a time
using this row sequence;

Original Row Binary Reverse Binary Destination Row

0 000000 000000 0

1 000001 100000 32

2 000010 010000 16

3 000011 110000 48

4 000100 001000 8

5 000101 101000 40

...
This interlacing scheme reduces the overheads while viewing an image at scaled
down resolutions. For example, if an image was to be displayed at a scale down of
1:2, it would be desirable to take every other row of each tile. With this interlacing
scheme, to display all of the even rows, only the first half of the tile data needs to be
decompressed. This works for all scale down factors, e.g.g for 1:4, only the first ¼ of
the tile data needs to be decompressed.

The Quick Chart File Format Specification V1.03 12

7.2 Pixel Packing

Pixel packing is an efficient method for storing tile data where the number of colours
used in the tile is low. A sub-palette is created for the colours used within the tile,
and the number of bits required per pixel is determined from the size of the sub-
palette. For example, if a tile had 13 colours, 4 bits would be required in order to
address the colours of the sub-palette.

256 -
Subpal
Size

Colour Colour Colour Colour Colour ... Packed
Tile
Data

Packed
Tile
Data

Packed
Tile
Data

Packed
Tile
Data

Packed
Tile
Data

Packed
Tile
Data

Packed
Tile
Data

Packed
Tile
Data

... ...

The first byte codes for the size of the sub-palette;

Sub-Palette Size=256−b0

Following this is the sub-palette with one byte per colour index. Each sub-palette
byte is a colour index for the main image palette. The tile image data immediately
follows the sub-palette.

Tile image data are stored in blocks of 4 bytes. The colours are then packed into the
block of 4 bytes, aligned to the LSB of the first byte. Any remaining space within the
4th byte that is too small to fit another pixel is not used. For example, if a tile has a
sub-palette of 7 colours, 3 bits would be required per pixel. Therefore 10 pixels (30
bits) of data can be packed into the 4 byte block, leaving 2 unused bits. In this case,
a total of 410 blocks (1640 bytes) of data would be required in order to store the
64x64 pixel tile.

7 Byte 0 0 7 Byte 1 0 7 Byte 2 0 7 Byte 3 0

3 3 2 2 2 1 1 1 6 5 5 5 4 4 4 3 8 8 8 7 7 7 6 6 X X 10 10 10 9 9 9

The number of bits required to store the colour is determined from the sub-palette
size.

7.3 Run Length Coding

Run length coding compresses image data where a single colour is repeated multiple
times. By using a sub-palette similar to the pixel packing technique, the number of
bits required to reference a colour is reduced, leaving the remaining bits of the byte
to be used for specifying the repeat count.

Subpal
Size

Colour Colour Colour Colour Colour ... Repeat
Count /
Colour

Repeat
Count /
Colour

Repeat
Count /
Colour

Repeat
Count /
Colour

Repeat
Count /
Colour

Repeat
Count /
Colour

Repeat
Count /
Colour

Repeat
Count /
Colour

... ...

The first byte codes for the size of the sub-palette. However with run length coding,
the number does not need to be subtracted from 256.

Following this is the sub-palette with one byte per colour index. Each sub-palette
byte is a colour index for the main image palette. The tile image data immediately
follows the sub-palette.

Compressed data are stored as a stream of bytes, with the sub-palette index right
aligned to the LSB and the repeat count stored in the remaining bits. For example, if
a tile only used 4 colours, the 4 colour sub-palette would only require a 2 bits in
order to address each colour. This leaves 6 bits to be used to specify the repeat
count, giving maximum of 63 repeats.

7 Run-length Encoded Byte 0

REP5 REP4 REP3 REP2 REP1 REP0 COL1 COL0

The number of bits required to store the colour depends only upon the sub-palette
size.

The Quick Chart File Format Specification V1.03 13

7.4 Huffman Coding

Huffman coding is the most complex of the three coding methods. A special sub-
palette called a code book is used to reduce the number of bits per pixel, however
the binary codes used to reference the colours of the sub-palette have varying
lengths. Short code words are given to colours that occur most frequently, and the
longest code words are given to colours that occur least frequently.

During the compression process, the tile is analysed to determine the frequency of
occurrence of each colour. A Huffman tree is then created by sorting the frequencies
in order of occurrence, and leafs and branches are assigned systematically such that
the most frequently occurring colours have the shortest route from the root node to
the leaf. The method produces an optimised Huffman tree which can then be
transformed into a codebook with varying code lengths for compressing the tile
image data.

To decompress the tile, the same codebook created for the compression process
must used. Image data are treated as a continuous bit stream and as each bit is
read, the codebook is used to determine which direction to take at a certain branch
of the Huffman tree. Once a leaf node is reached, the colour for the current pixel has
been determined, codebook pointer is returned to the root node of the tree and
execution of the bit stream sequence continues.

0x00
or
0xFF

Code
Book
Data

Code
Book
Data

Code
Book
Data

Code
Book
Data

Code
Book
Data

Code
Book
Data

... Bit
Stream
Data

Bit
Stream
Data

Bit
Stream
Data

Bit
Stream
Data

Bit
Stream
Data

Bit
Stream
Data

Bit
Stream
Data

... ...

7.4.1 Huffman Codebook

The codebook is stored in such a way that it resembles the Huffman tree. Each entry
in the codebook is either a branch or a colour. A simple test can determine if a
codebook entry bn is a branch or a colour;

If bn128 then bn is a colour index from the main palette.

Else bn is a branch.

Codebook branches are essentially a relative 'goto' instruction. The branch entry
contains the destination address relative to the current position in the code book.
Codebook branches always jump forwards in the codebook and one of take two
forms, near or far. With near branches, the relative jump destination is within 127
bytes of the jump origin. Far branches can have jump destinations up to 65536 bytes
away from the jump origin. In reality, it is unusual to have a far jump much above
200 for a tile of 64x64 pixels. If a codebook entry bn is a branch, then the type and
relative jump distance of the branch can be calculated as follows;

If bn128 then the branch is of type near.

Relative Jump=257−bn

If bn==128 then the branch is of type far.

Relative Jump=65537−256×bn2bn12

Note that the far jump requires an additional 2 bytes of space in the codebook.

The Quick Chart File Format Specification V1.03 14

7.4.2 Huffman Bit Stream

Image data are packed into a continuous binary stream beginning in the LSB of each
byte. As each bit is read from the bit stream, the Huffman tree within the codebook
section is traversed in a similar manner as the execution of a finite state machine. At
each branch in the tree, the bit read from the bit stream determines whether or not
to follow the branch, or continue;

● 0 - Do not follow the branch, continue to the next entry.

● 1 - Follow the branch.

As soon as a colour is encountered in the codebook, the colour is output for the
current pixel, and the codebook pointer must be reset to the beginning of the
codebook.

The process should be stopped after the last pixel of the tile has been drawn.

7.4.3 Finding the Start of the Bit Stream

In order to find the start of the bit stream, a codebook tree scan must be performed.

Since every branch in the tree splits two ways, there will always be one more colour
than the total number of branches. By scanning through the codebook, counting the
number of branches, and the number of colours. The end of the codebook is at the
point where the number of colours found exceeds the number of branches found.

The end of the codebook is the beginning of the bit stream.

7.4.4 Blank Tiles

Blank tiles can be decoded using the normal Huffman decoding procedure. A blank
tile has no branches in its codebook, and is therefore a single colour connected to
the root node. The tile is a blank square filled with this colour, and the bit stream has
zero length.

The Quick Chart File Format Specification V1.03 15

7.4.5 Huffman Coding Example

To decode the following compressed data;

00 F7 FF 54 FF 34 FF 1D FF 53 2F 1B 35 F2 AB 06 78 E4 ...

First parse through, identifying the sub-palette colours and and branches, then
identify the beginning of the bit stream using the technique described in section
7.4.3;

Code Book Data Bit Stream Data

00 F7 FF 54 FF 34 FF 1D FF 53 2F 1B 35 F2 AB 06 78 E4 ...

Example sub-palette mapping;

Palette
Index

Example
Colour

0x54 Red

0x34 Green

0x1D Blue

0x53 Magenta

0x2F Cyan

0x1B Yellow

The Huffman codebook can then be checked for out of bounds branch jumps by
verifying that all jumps fall within the codebook. The codebook could also be
checked to verify that only one route leads to any given branch or colour. Refer to
figure 2 for a diagrammatic representation of the codebook.

From section 7.4.1:

0xF7 decodes as a relative jump forwards of 10 bytes.

0xFF decodes as a relative jump forwards of 2 bytes.

The Quick Chart File Format Specification V1.03 16

Figure 2: Diagrammatic Representation of Huffman Codebook

0 0 0 0 0
1 1 1 1 1

F7 FF 54 FF 34 1D 53 2F 1BFF FF

The Huffman tree represented by this
codebook can then be drawn, refer to
figure 3.

From the Huffman tree, the variable
length codes that represent each
colour can be easily identified.

Palette
Index

Example
Colour

Huffman
Code

0x54 Red 00

0x34 Green 010

0x1D Blue 0110

0x53 Magenta 01110

0x2F Cyan 01111

0x1B Yellow 1

The bit stream can then be decompressed by processing one bit at a time until each
colour has been decoded. Using the example bit stream data;

Bit Stream Data

35 F2 AB 06 78 E4 ...

Expanding the bit stream (from left to right);
0 0 1 1 0 1 0 1 1 1 1 1 0 0 1 0 1 0 1 0 1 0 1 1 0 0 0 0 0 1 1 0 0 1 1 1 1 0 0 0 1 1 1 0 0 1 0 0

Decoded colours
0 0 1 1 0 1 0 1 1 1 1 1 0 0 1 0 1 0 1 0 1 0 1 1 0 0 0 0 0 1 1 0 0 1 1 1 1 0 0 0 1 1 1 0 0 1 0 0

Therefore 23 pixels have been compressed into 6 bytes.

Due to the method by which the codebook is stored, the decompression algorithm
does not need to extract and build the Huffman tree for each tile. After verifying the
integrity of the codebook, the branches of the Huffman tree can be followed by
evaluating it “in situ” while processing the bit stream, refer to figure 2.

The Quick Chart File Format Specification V1.03 17

Figure 3: Huffman Tree

0

1

1

0

0

1 0

1 0

1

8.0 Geographical Referencing Polynomials
The geographical referencing coefficients enable forward and reverse transformation
between image pixel coordinates and WGS-84 longitude and latitude. The image
coordinates x and y are relative to the top left corner of the image.

The set of polynomial coefficients and their location within the file was discussed in
section 6.3.

Converting image x/y coordinates to longitude/latitude:

= lonXXX×x3
lonXX×x2

lonX×x
lonYYY×y3lonYY×y2lonY×y
lonXXY×x2 ylonYYX×y2 xlonXY×xy
lon

= latXXX×x3
latXX×x2

latX×x
latYYY×y3

latYY×y2
latY×y

latXXY×x2 ylatYYX×y2xlatXY×xy
lat

Converting longitude/latitude to image x/y coordinates:

x= easXXX×
3
easXX×

2
easX×

easYYY×3easYY×2easY×

easXXY×
2
easYYX×

2
easXY×

eas

y= norXXX×
3
norXX×

2
norX×

norYYY×
3
norYY×

2
norY×

norXXY×
2
norYYX×

2
norXY×

nor

Where:

x is the pixel horizontal coordinate from the left

y is the pixel vertical coordinate from the top

 is the WGS-84 Longitude

 is the WGS-84 Latitude

The datum shift east/north values from the meta data must be added to the
converted longitude/latitude after converting from x/y coordinates. Similarly, the
datum shift must be subtracted from the latitude/longitude before converting back to
x/y coordinates.

The Quick Chart File Format Specification V1.03 18

9.0 QC3 Format
The QC3 format stores the meta data in a file with extension .qct, and the image
data in a file with the same name but with extension .qct. The following differences
can be found in the Quick Chart File:

● The version number is 0x20000001

● There is no Image Index present

9.1 Quick Chart 3 File Layout

Offset Size (Bytes) Content

0x0000 10×4 Meta Data - 24 Integers

0x0028 w×h×8 Image Index Pointers

- - File Body - compressed image data

9.2 Data Formats

Integers are stored as 4 bytes in Little-Endian byte order.

Pointers are stored as 8 bytes in Little-Endian byte order and refer to byte locations
relative to the beginning of the file.

Sizes are stored as 4 bytes in Little-Endian byte order, but need to be multiplied by 4
to obtain the size in bytes.

9.3 Meta Data

Offset Data Type Content

0x00 Integer Magic Number, set to 0x484DF282

0x04 Integer File Format Version, set to 1

0x08 Integer Encryption Scale (see section 9.9)

0x0C Integer Width (Tiles)

0x10 Integer Height (Tiles)

0x14 5 Integers Reserved, set to 0

The Quick Chart File Format Specification V1.03 19

9.4 Image Index

The image is compressed using tiles of 1024x1024 pixels. The image dimensions in
terms of the number of tiles are stored in the Height and Width Meta data fields. For
each tile in the image, an entry is present in the index. Each index entry is a pointer
to the tile meta data. Each pointer is eight bytes in size, hence the size of the image
index can be calculated as follows;

Index Size=8×width×height

The offset of any given tile in the index can be calculated by;

Offset=8×((Width×y)+ x)

There are two reserved values for pointers:

0 means the tile is missing and may be streamed if possible

-1 means the tile is not defined and does not exist

9.5 Tile Meta Data

Each pointer in the image index points to this structure.

Offset Data Type Content

0x00 10 Sizes Size of the compressed image data for each scale
starting from the Huffman Tree size (see section 9.6)

0x28 Size Size of of the compressed image data starting from
the Huffman Tree size

0x2C 10 Bytes One byte checksum for each scale (see section 9.7)

0x36 22 Bytes Reserved, set to 0

0x4C Size Size of the Huffman Tree (see section 9.8)

0x50 ... Huffman Tree (see section 9.8)

... ... Compressed Image Data (see section 9.8)

9.6 Scale Levels

QC3 files used the same interlacing pattern as described in section 7.1 with the
exception that there are now 1024 rows of 1024 pixels instead of 64. The row
pattern is thus:

Original Row Binary Reverse Binary Destination Row

0 0000000000 0000000000 0

1 0000000001 1000000000 512

2 0000000010 0100000000 256

3 0000000011 1100000000 384

4 0000000100 0010000000 128

5 0000000101 1010000000 640

... …

The Quick Chart File Format Specification V1.03 20

In order to read the minimum amount of data from disk when scaled down, the meta
data contains an array of sizes of the compressed image data (including the Huffman
Tree and Huffman Tree size) that needs to be read to display the relevant number of
rows.

Offset Number of rows the size represents

0x00 1024

0x04 512

0x08 256

...

0x24 2

For example, if one wanted to read the first 256 rows (subject to interlacing), they
would look up the value of offset 0x08 in the meta data, multiply it by 4, and then
read that many bytes starting at offset 0x4C (the size of the meta data excluding to
the Huffman Tree size). When decompressing the data, they can be sure that they
have a sufficient amount the compressed stream to read the 256 rows in their
entirety.

To clarify, the compressed data forms one stream for all 1024 rows (although
interlaced). However when scaling down the image, one does not need all data, and
the size array describes how much of the compressed data one needs.

9.7 Checksum

The data needed to be read for each scale level also has a one byte checksum. The
order is the same as the size array in that the first checksum corresponds to the
entire 1024 rows. The calculate the checksum, perform the following algorithm:

● Compute the sum of the first size 4 byte integers from offset 0x4C of the tile
meta data, where size is the value in the size array

● Compute the sum of the 4 bytes in the previous value, and take the least
significant byte

For example, calculate the checksum of the following compressed data where the
size field we are interested in has the value 3;

00 11 22 33 44 55 66 77 88 99 AA BB CC DD EE FF 00 11 ...

First integer = 0x33221100

Second integer = 0x77665544

Third integer = 0xBBAA9988

Sum (truncated to fit an integer) = 0x6632FFCC

Sum of bytes = 0x66 + 0x32 + 0xFF + 0xCC

Sum = 0x63

The Quick Chart File Format Specification V1.03 21

9.8 Compression

Tiles are compressed using a combination of Huffman Coding and Run Length
Encoding. The first integer following the tile meta data is the size of the Huffman
tree. This is used in contrast to Quick Chart Huffman tree, as data must be aligned to
multiples of 4 bytes, thus the start of the code book and bit stream fall on 4 byte
boundaries.

Size
LSB

Size Size Size
MSB

Code
Book
Data

Code
Book
Data

Code
Book
Data

Code
Book
Data

Code
Book
Data

... Bit
Strea
m
Data

Bit
Strea
m
Data

Bit
Strea
m
Data

Bit
Strea
m
Data

Bit
Strea
m
Data

Bit
Strea
m
Data

Bit
Strea
m
Data

Bit
Strea
m
Data

...

9.8.1 Huffman Codebook

The codebook is stored in such a way that it resembles the Huffman tree. Each entry
in the codebook is either a branch or a leaf colour. The codebook should be
interpreted as an array of 16 bit signed integers in little-endian format. A simple test
can determine if a codebook entry wn is a branch or a colour;

If wn≥0 then wn is a colour index from the main palette.

Else wn is a branch.

Codebook branches are essentially a relative 'goto' instruction. The branch entry
contains the destination address relative to the current position in the code book.
Codebook branches use the following formula:

Relative Jump=¬wn×2+ 4

Instead of simply storing the palette entry in the leaves of the Huffman tree, a pair of
values are stored:

Offset Data Type Content

0x00 Byte Palette Entry

0x01 Byte Size for Run Length Encoding (see section 9.8.2)

9.8.2 Run Length Encoding

The size field controls the run length encoding. It specifies how many bits of the bit
stream to consume to obtain the count for the number of times to output that pixel
entry. To ensure an optimal representation, an offset is added to the value read to
ensure that no count can be represented in more than one way (which introduces
redundancy).

Size Number of extra bits to consume Offset Interval represented

0 0 1 [1, 2]

1 2 2 [2, 6]

2 4 6 [6, 22]

3 8 22 [22, 278]

Thus, this scheme can compress runs of up to 277 instances of the same value. Bits
are read most significant bit first to construct the count.

The Quick Chart File Format Specification V1.03 22

The bits for Run Length Encoding are interlaced with the bits for Huffman
decompression. Firstly the bits are consumed to find the correct leaf in the Huffman
tree, then the relevant number of bits are consumed for Run Length Encoding.

9.8.3 Decompression Example

To decode the following compressed data;

03 00 00 00 FD FF FF FF 54 03 34 02 1D 00 CC CC 35 F2 AB

Split the data in each section using the size fields;

Size Code Book Data Bit Stream

03 00 00 00 FD FF FF FF 54 03 34 02 1D 00 CC CC 35 F2 AB

The bytes with value 0xCC are padding to align the bit stream to a 4 byte boundary
any may be any value.

Example sub-palette mapping;

Palette
Index

Example
Colour

0x54 Red

0x34 Green

0x1D Blue

Refer to figure 4 for a diagrammatic representation of the codebook.

From section 9.8.1:

0xFFFD decodes as a relative jump forwards of 8 bytes.

0xFFFF decodes as a relative jump forwards of 4 bytes.

The bit stream can then be decompressed by processing one bit at a time until each
colour has been decoded.

The Quick Chart File Format Specification V1.03 23

Figure 4: Diagrammatic Representation of Huffman Codebook

0
1

FD FF FF FF 54 03 34 02 1D 00

0
1

Using the example bit stream data;

Bit Stream Data

35 F2 AB 06 78 E4 ...

Expanding the bit stream (from left to right);
0 0 1 1 0 1 0 1 1 1 1 1 0 0 1 0 1 0 1 0 1 0 1 1

Decoded colours
0 0 1 1 0 1 0 1 1 1 1 1 0 0 1 0 1 0 1 0 1 0 1 1

The first leaf is red, and so we must read 8 bits for the count. 11010111b equals 215,
so adding 22 gives 237 red pixels.

Following on are 2 blue pixels.

Then another red leaf, and so again we must read 8 bits for the count. 10101010b
equals 170, so adding 22 gives 192 red pixels.

Following on are 2 blue pixels.

After all the data has been compressed, the tile must be de interlaced.

9.9 Digital Rights Management

QC3 files may have part of the compressed data stream encrypted. The only
algorithm observed has been 128 bit AES in ECB mode. More interesting however is
the algorithm to determine what is encrypted.

The third entry in the QC3 meta data header contains the level of encryption used. It
may range of the value -1 up to 9. This value controls at what scale encryption
starts. For example, a value of -1 indicates no encryption, and a value of 3 means

1
16

 of the rows are available.

To decrypt a tile, add 1 to the value in the header, and look up the scale size for that
index. Start decrypting from that offset (multiplied by 4 as usual) to the end of the
tile data.

This means that encrypted tiles can be successfully decoded up to the scale that
encryption starts without knowing the key.

The Quick Chart File Format Specification V1.03 24

	1.0 Change History
	2.0 References
	1 http://en.wikipedia.org/wiki/Run-length_encoding
	2 http://en.wikipedia.org/wiki/Huffman_coding
	3 http://en.wikipedia.org/wiki/WGS-84
	4 http://en.wikipedia.org/wiki/Endianness
	5 http://en.wikipedia.org/wiki/IEEE-754
	6 http://en.wikipedia.org/wiki/Ascii
	7 http://en.wikipedia.org/wiki/Advanced_Encryption_Standard
	8 http://en.wikipedia.org/wiki/Block_cipher_modes_of_operation

	3.0 Acronyms and Abbreviations
	4.0 Important Note
	5.0 Introduction
	5.1 Key Features
	5.2 QC3 Key Features

	6.0 Quick Chart File Layout
	6.1 Data Formats
	6.2 Meta Data
	6.2.1 Extended Data Structure
	6.2.2 Map Outline
	6.2.3 Datum Shift
	6.2.4 License Information
	6.2.5 Digital Map Shop
	6.2.6 Serial Number

	6.3 Geographical Referencing Coefficients
	6.4 Palette
	6.4.1 Interpolation Matrix

	6.5 Image Index

	7.0 Compressed Image Data
	7.1 Interlacing
	7.2 Pixel Packing
	7.3 Run Length Coding
	7.4 Huffman Coding
	7.4.1 Huffman Codebook
	7.4.2 Huffman Bit Stream
	7.4.3 Finding the Start of the Bit Stream
	7.4.4 Blank Tiles
	7.4.5 Huffman Coding Example

	8.0 Geographical Referencing Polynomials
	9.0 QC3 Format
	9.1 Quick Chart 3 File Layout
	9.2 Data Formats
	9.3 Meta Data
	9.4 Image Index
	9.5 Tile Meta Data
	9.6 Scale Levels
	9.7 Checksum
	9.8 Compression
	9.8.1 Huffman Codebook
	9.8.2 Run Length Encoding
	9.8.3 Decompression Example

	9.9 Digital Rights Management

